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Introduction

This document provides a summary of the research conducted under for the NASA Ames Research
Center under grant NAG2-1182 (Condition-Based Monitoring of Large-Scale Facilities). The
information includes copies of view graphs presented at NASA Ames in the final Workshop (held
during December of 1998), as well as a copy of a technical report provided to the COTR (Dr. Anne
Patterson-Hine) subsequent to the workshop. The material describes the experimental design,
collection of data, and analysis results associated with monitoring the health of large-scale facilities.
In addition to this material, a copy of the Pennsylvania State University Applied Research
Laboratory data fusion visual programming tool kit was also provided to NASA Ames researchers.
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ABSTRACT

Condition-Based Maintenance (CBM) requires the identification and tracking of the sensor
observables capable of indicating faults and the ability to relate these variables to the overall health
and remaining useful life of the machine. The progress on developing suitable dynamic models for
diagnosing and tracking mechanical systems failure is reviewed. The objectives are to provide
physical understanding and context to the association between damage severity and observables
and support future implementation of data fusion and model-based prediction methods. The
developed methodology is applicable to both the MURI IPD Program and NASA Ames driveline

diagnostics. An overview and technical results are provided.

NASA Ames Research Center under Subcontract GFY900240 and the Office of Naval Research
under ONR Grant: N00014-95-1-0461 has provided support for this work. The report was
compiled with input from additional ARL personnel, Ken Maynard, Terri Merdes, and Colin Begg.
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1. INTRODUCTION
This work was performed under sponsorship of the NASA Ames Research Center and the Office of

Naval Research to improve the methodology in model-based prediction of machinery faults. The
modeling thrust is focused on the development of methods using explicit non-linear diagnostic and
prognostic models for mechanical systems failure. The thrust is coordinated with the sensor
techniques to provide association between damage severity and observables, and it supports the

implementation of data fusion and reasoning based upon model-based prediction methods.

The development of model-based prognostic capability for CBM requires a proven methodology to
create and validate physical models that capture the systems’ dynamic response under normal and
faulted conditions. In heavy duty and high-performance power transmission systems, the rotary
elements can be driven to catastrophic failure through many types of mechanisms. Subsystem
component defective material and even normal wear can lead to fatigue stress cracks. Damage
initiated by transient load swings due to larger magnitudes and higher than expected amounts of
intermittent loading cycles can also occur in a system when operational performance limits are
chronically commanded. For a majority of systems, operational demands prescribe a slow (as
compared to operational speed or the length of a given machine service event) evolution in material
property and/or component apparent configuration changes. The potential thus exists to track the

fault through the (filter of the) system’s behavior via it’s dynamic (vibratory) response.

Tas ra ket
el

Tarque
el

LTS TRl TERN

Figure . ARL Mechanical Diagnostics Test Bed is a key facility for developing transitional failure data sets
and developing prediction methodology



Statically, and in terms of life cycle fatigue behavior, faults and failures in gear pairs, rotary
shafting, and bearings is fairly well understood but dynamic response and tribological information
is lacking for machines operating to failure. This shortcoming is precisely the motivation behind
the development of the Mechanical Diagnostics Test Bed (MDTB), which was developed by ARL

to provide transitional failure data on gearboxes and is shown in Figure 1.

Specific computational results and experimental validation methods based on a thorough review of
the state of the art in drive system modeling are presented. A methodology for modeling the

gearbox system under normal and faulted conditions is presented in the context of developing a

model-based prognostic approach.

2. SUMMARY OF TECHNICAL PROGRESS

Task Performers Objective Task Description
Dynamic Ken Maynard Develop mechanical 1. Torsional response and mode
Mechanical | Colin Be systems and fault shape ANSYS model
echanica ol g8 models for predicting | 2. System-level multi-DoF dynamic
Systems Terri Merdes MDTB failures. ANSYS models
. 3. Subsystem-level, multi-DoF
Models Carl Byington gearbox models
4. Fault injec{ion/assoc. methods

Experimental | Colin Begg Characterize the MDTB | 1. MDTB driveline frequency

) structural response and response function estimation
Characterizat | Jeff Banks gearbox dynami cs for 2. Subsystem modal analysis
ion Jim Kozlowski | model validation. 3. Computer model validation

3. MODELING APPROACH

The mechanical systems modeling effort is comprised of computational and experimental work to
understand, model, and correctly predict the evolution of faults in the MDTB system. The gearbox
system model serves as a numerical study test bed to aid in optimal, or development of a best,
sensor location strategy for CBM. Computational modeling efforts include the definition of finite

element modeling and experimental identification/characterization of system modal and transfer



characteristics. Analytical dynamics models of gear mesh, rotating shaft, and bearing faults will be
adapted for integration and inclusion into an overall system model as nonlinear system perturbation

forces.

4. CURRENT RESEARCH RESULTS

At the Pennsylvania State University (PSU) a Mechanical Diagnostics Test Bed (MDTB), Figure 1,
of a geared mechanical rotor power transmission system has been designed and built. In the past,
rotor system test beds have been constructed [Badgley et. al., 1974] to aid in the development of
improved analysis and design capabilities of overall system rotor drive performance. The MDTB
was designed specifically for the generation of transitional data to aid in the development of fault
signature recognition and tracking algorithms [Byington et. al.,, 1997]. The MDTB is comprised of
nine components that contain rotating clements. They consist of a variable speed AC drive motor,
(2) tachometer/torque sensors (one for gearbox input and one for output), a single stage reduction
helical gearbox, a load generator, and (4) shaft couplings ((3) gear and (1) chain type). An
accompanying constant speed variable torque control system can be used to produce any form of
normal to overload duty cycles required for long duration testing. The system is equipped with a
data acquisition system that can provide numerous channels of continuous long duration records
for any combination of accelerometer, torque, speed, and thermocouple sensor measurement
signals. Faults that have been generated and studied to date, consist of overload generated gear

tooth root cracks and gearbox cracked rotor shafts.

Many researchers and engineers have thoroughly investigated individual components and systems
where a few critical components are coupled together in rotor power generation and transmission
machinery. Many notable contributions have been made in the analysis and design, and in
increasing the performance of rotor systems, and in the fundamental understanding of different
aspects of rotor system dynamics [Dimentberg, 1961; Todl, 1965, Dimarogonas, 1983; Rao, 1983;
Vance, 1988; Childs, 1993; Kramer, 1993; Lee, 1993, Dudley, 1994; Lalanne et al., 1998]. More
recently, for ergonomic as well as design reasons, many commercial and defense efforts have been
focused on the prediction of vibration and noise from gearboxes in power transmission [Mitchell et
al., 1982; Ozguven, 1988; Choi et al., 1990; Lim et al., 1991; Kahraman, 1993]. With the recent

interest in system health monitoring [Rao, 1996] the modeling of complete geared power



transmission rotor systems with faults has arisen. The motivation to develop a system model comes
from the need to have time history response data from system monitoring sensors available for
signal processing and fault detection algorithm development and testing. A computational model
could allow immediate feedback on algorithm performance, and mitigate time consuming and
costly testing. Additionally a model could be used to better ascertain the best specifications for,

and placement of measurement sensors, and provide a means for efficient evaluation of fault

extraction models used in fault signature recognition algorithms.

4.1. DYNAMIC MECHANICAL SYSTEMS MODELING
The overall objective of the MDTB modeling effort is to obtain a system model that can be used for

system dynamics analysis and simulation. Simulation is required to provide time history responses
of vibratory states (displacements, velocities, and accelerations) at desired sensor locations in and
around the system gearbox. States generated by typical, multiple, rotor system sources of excitation
- rotor disk unbalance, coupling misalignment, gear mesh mechanics, and roller bearing dynamics

are of prime interest, see Equation 1 and Figure 2.

To achieve the modeling objective an approximate nominal linear lumped parameter
characterization of the system is necessary. For the system gearbox model, disturbances are
considered as time varying parametric excitations and N per revolution (N being an integer)
periodic forces. Models of specific gearbox faults — gear tooth root fracture [Randall, 1982;
McFadden et al., 1986] rotor shaft fracture [Nelson et al., 1986; Wauer, 1990; Wauer, 1990; Jun et
al., 1992], and bearing wear defects [Dyer et al., 1978; Braun et al, 1979; McFadden et al., 1984]
provide relevant fault modeling background. System faults are emulated via the integration of
perturbations into the system excitations and forcing. System modeling expectations will be met if
the model-generated vibratory states can be used to imitate signature changes in response to fault
perturbations. As is typical during condition monitoring circumstances, constant speed and torque

operating conditions will only be considered for models synthesized of the overall system.
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Figure 2. System Modeling Approach and Fault Introduction

{M};}%"’{C*‘G}?"’{K +AKfault(t)+8AKt'ault(t)}yzﬁ(t)—S?&mt(t) (1)

FEM is used to assemble the approximate nominal linear system mass, gyroscopic, and stiffness,
matrices, {M}, {G}, and {K}, and an estimate of the linear system viscous damping, {C}, is
produced from experimental modal analysis. Changes in forcing function and effective stiffness

values are represented by the equation.

4.1.1. Torsional Structural Response Model
The Condition-Based Maintenance (CBM) Department at the Pennsylvania State University

Applied Research Laboratory developed a transitional modal analysis modeling process, using
ANSYS to model the Mechanical Diagnostic Test Bed (MDTB). ANSYS [Swanson Analysis
Systems, i994] is a modeling software package for finite element analysis and design, which can
be used in many disciplines of engineering-structural, mechanical, electrical, electromagnetic,

electronic, thermal, fluid and biomedical.

The procedure of solving a system of simultaneous differential equations of motion by transforming
them into a set of independent equations by means of the modal matrix (associated with mass and
stiffness matrices) is referred to as modal analysis. In this method the expansion theorem is used,

and the displacements of the masses are expressed as a linear combination of the normal modes of

5



the system. This linear transformation uncouples the equations of motion so that we obtain a set of
n single degree of freedom systems, can be readily obtained. Modal analysis helps in
understanding vibrational characteristics by calculating the natural frequencies and mode shapes of

a linear system, which are important parameters under dynamic loading conditions.

The system, shown in Figure 3, composed of shafts, couplers and rotors. These are each modeled
as elastic straight solid pipe with linear through thickness (ANSYS structural mass element
“pipel6”). Both the 30 Hp and 75 Hp torque cells are modeled using point loaded mass elements
(“mass2[”). The gear mesh stiffness of the gearbox is represented as a (“combination4”) element
allowing for torsional capability; this is a purely rotational element with three degrees of freedom at
each node, with no bending or axial load considerations. Once this model was constructed and the
loads were applied with the appropriate degrees of freedom, the model was run to validate the

densities and explore the effects of varying the spring constant.

Gear Coupler

Gear Coupler

30 Ho Rotor

Gear Coupler
Torque Cell

Gearbox Pinion %'

Gearbox Gear

Chain Coupler

Torque Cell

75 Hp Rotor

Figure 3. ANSYS torsional models of MDTB provides mode shape and dynamic response prediction
The gear mesh stiffness is a significant variable in the estimation of dynamic characteristics of the

driveline. The stiffness constants for mesh deflection of the teeth are difficult to estimate with



certainty. Some tests to determine this parameter are reported in technical literature, but the data is
still rather limited due to the fact that the gear teeth are very stiff. Load distribution is one of the

most complex subjects in gear design for the following reasons.

e Helical spiral of pinion does not typically match helical spiral of mating gear resulting in a
(helix error effect).

o The pinion body bends and twist under load so that there is a mismatch between pinion and the
gear teeth resulting in (deflection effects)

e Centrifugal forces distort the shape of the pinion or gear and mismatch the teeth, (centrifugal
effects).

Deliberate design modifications, such as crowning, easement, or helix correction, concentrate the
load in one area and relieve the load in another area. This is usually done to lessen the effect of one

of the preceding items, but it is an effect in itself (design effects).

Darle W. Dudley found through tests on gear teeth, that a good average value for a typical gear
design was a gear mesh stiffness constant of 2,900,000 psi to be used as a multiplier on the face
width (F) measured in inches and the radius squared (Equation 2). Using this equation, with the

MDTB gear data, the fundamental torsional mode frequencies are predicted in Figure 4.

Ke=(r)*(2,900,000 1b/in”)(F) [1b-in] )

Fundamental Frequencies Generated by ANSYS
(Spring Constant 7.39X10%6 Ib-in/rad)

19200 T — e I
1000 1
800

600
400

200 AR

P |

Frequency (Hz)

Mode O Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Mode Shapes

Figure 4. Fundamental mode shape frequencies predicted by ANSYS model using Dudley's equation
The gear mesh stiffness represented by a spring constant was changed by several orders of
magnitude, to determine the sensitivity of this unknown on the fundamental frequency values.

When the spring constant increases above the nominal value, there is very little effect on the natural



frequencies; however, the natural frequency showed a marked sensitivity to the spring constant
when they are decreased below the nominal value, as shown in Figure 5. Quantification of this

effect is necessary to fully validate the model and understand the structural behavior of the MDTB.
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Figure 5. Dependency of torsional mode frequencies to main uncertainty- gear mesh stiffness
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Figure 6. Mode shape analysis shows Modes 1-+ and the predicted frequency of each. Faults that affect
torsional stiffness are likely to cause a shift in these frequencies that is detectable and trackable.

The predicted mode shapes are shown above. The models general behavior is reasonable, as there
are neither separation points nor odd behavior patterns. For visualization, massless beams, which
appear as blue lines perpendicular to the elements, were added to trace the predicted shape of
modes 1-4. The nominal linear system mass, stiffness and linear viscous damping are validated

through experimental modal analysis to further refine the ANSYS model. This model captures the



system-level kinematics and is sensitive to faults that affect stiffness in the torsional domain, such

as gear and shaft cracks.

4.1.2. Multiple DOF Model
The complete MDTB lumped parameter system model is being developed using the finite element

modeling (FEM) method in corroboration with supporting experimental dynamics analysis. FEM
is used to assemble the approximate nominal linear system mass, gyroscopic and stiffness matrices,
{M}, {G}, and {K}, and an estimate of the linear system viscous damping, {C}, is produced from
experimental modal analysis. The commercial software package ANSYS [Swanson, 1994] is being
used to assemble system conservative parameter matrices. A four channel dynamic analyzer, modal
impact hammer, the software package STAR MODAL [STAR Users Guide, 1996], and single and
triaxial accelerometers are used to perform testing and provide system experimental dynamics

information.

In FE models, rotor coupling, shaft, and gear components are modeled employing beam and
lumped mass type elements, and gearbox frame/housing and foundation pedestals are modeled
employing Plate/Shell and lumped mass and stiffness type elements. Body to body coupling of
solid structures in the model has been studied extensively. The inter-body interactions of shaft-
bearing-frame [Jones, 1960; Lewis et al., 1965; Lim et al., 1991], bolt-frame [Deutschman et al.,
1975: Sun, 1989], coupling-shaft [Moked, 1968; Kirk et al,, 1984], and gear-gear [Kahraman et al,,
1992: Blankenship et al.; Choy, 1992]) will also be considered.

In order to aid in the validation of lumped parameter characterizations of tachometer/torque
transducer and gearbox pedestals, and the system gearbox frame/housing a comparison of
experimental obtained mode shape and natural frequencies, and an FE eigenvalue/vector analysis
[Choy, 1993; Buckles, 1996] is made with free-free boundary conditions. Also, FE and
experimental dynamics tests are performed and evaluated with pedestals in various phases of bolted

assembly to aid in the validation and determination of fastener connection parameters.

A two step process will be followed to assure a low order (number of degrees-of-freedom) system
model obtains system responses effectively. First, only system component models with a minimal
number of finite elements (which simultaneously assure local structural dynamic integrity) is

employed, and second, a condensation of portions of the system model (where there is no interest in
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terms of system response) is used. System matrices are reduced using the Guyan Reduction process

[Guyan, 1965; Rouch, 1991] in ANSYS. However, other reduction techniques are available for

rotor dynamic systems as well [Mohiuddin, 1998].

4.1.3. Subsystem (Gearbox) Model

System and subsystem models are synthesized to accommodate component natural and critical

frequencies from ~ 0 to 4500 Hz. The upper limit being established by anticipated gear

transmission error dynamic sideband frequencies that may range up to approximately 4500 Hz (or ~

5 times the gear mesh frequency of the 3.33 reduction MDTB gearbox operating at 1750 RPM).

@\stam Speed Dynamic Signature \

pd
71
e [

KTI NRIVFY

;m]:th l Kot cam

JLOAD

< T,

NN

J Wour
T L
N & __: —

g4

Figure 7. Subsystem gearbox model to associate fault symptoms with gear case measurements will be a finer

resolution than system-level model.

As an initial part of all of the six tasks outlined a survey of the critical speeds (due to transverse

bending) and mode shapes of all drive train shafts supported on simple bearings (linear spring-

damper type) with their associated coupling halves and/or gear disk inertia, and their corresponding

torsional and axial natural frequencies, is performed to provide an estimate of the vibratory modes

that may participate (due to excitation generated by the 1750 RPM operating condition) in the

overall system model. This provides useful data for later synthesis of a complete hybrid system

model.
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4.2. EXPERIMENTAL CHARACTERIZATION
Initial model related experimental investigation efforts with the MDTB is focused on estimation of
the gearbox and tach/torque meter(s) foundation driving point impedances (at their respective
mounting fastener points), rotor shaft axial and torsional impedance, and frequency response
function background noise measurements. Complex dynamic impedance is estimated from
complex effective mass, M, measurements that are estimated by ensemble averaging impact
hammer response measurements. Measured frequency response functions are used to initially
identify gearbox and tach/torque transducer rotor and foundation natural frequencies and
equivalent modal viscous damping parameters. The driveline schematic and planned

measurement/load points are shown in

Rotor measurements are made with unidirectional accelerometers and a modal force impact
hammer under zero system drive speed, with: zero, one-quarter, one-third, and one-half full normal
drive load torque levels. Drive torque is necessary to physically engage the system drive train to
assure system: spline coupling, gear-to-gear, and rotor-to-bearing structural continuity.
Measurements for driving point impedance are carried out at three locations on the rotor system
(One each at the first three shaft couplings starting from the drive motor. These couplings
consequently are the only locations that admit access to the assembled rotor system.). Both axial
and torsional driving point impedance is necessary with two separate accelerometers for each
measurement location. The two separate accelerometer measurements provide discrimination
between flexural excited shaft vibrations and the corresponding axial or torsional vibration of
interest. The difference of the two response values added to the positive value of the difference is
an effective measure of the vibrational degree-of-freedom of interest. Resulting driven point

frequency responses are recorded for further analysis.
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Figure 8. The MDTB driveline and multiple impedance connections for motors and gearbox are shown. The
input forces in torsional and axial direction are introduced using impact hammers.

Foundation mounting drive point impedance is made with a triaxial accelerometer (with one axis
referenced to the pedestal that is aligned with the gearbox rotor shaft) and a modal impact force
hammer, with the corresponding piece of mounted hardware removed. Three MDTB component
foundations are assessed (the two tach/torque transducers and the one gearbox pedestal) with a

three dimensional driving point frequency response function characterized at each of the mounting

point fastener locations on the foundations.

4.3. TRANSITIONAL DATA & STOCHASTIC MODELING
In concert with the Sensing Thrust, we continue to build upon the transitional data collection on the

MDTB. During the run-to-failure transitional tests on the MDTB, we collect data from
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- w accelerometers, temperature, torque,
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Figure 9. MDTB Run Time History and Failure Summary
The ground truth inspection has allowed us to add an element of stochastic prediction methodology
to the MDTB effort. This effort supports selection of inspection interval and decision aiding tor
crack progression. Each inspection updates the crack growth rate, which could proceed along

many paths as is illustrated in

Experimental Data

Figure 10. Each inspection time 50

allows an update of the model to o

better isolate the failure trajectory Eg’zz

from all possible ones. This i 10

capability is show in Figure [ 1. o; v : P 5 s 3 35
Cycles x 10°

Figure 10. Experimental results from NASA Lewis fatigue data showing distribution of crack growth paths

14



Failure Rate max allowable failure rate

N\
Curve determined from
results of the inspection

t=10 Decision Epoch =tC(
Time

Figure 11, Realization of a failure rate cuve after ain 1inspection
The borescope provided excellent visibility to the eye when looking through the eyepiece, but the
view through the camera (33mm Nikon) was very dim. The low light level through the camera
resulted in 1/2 - 2 second exposure times, which forced the use of a tripod  This restricted the ease
in which pictures could be taken, due to the need to reposition the tripod for each change of
viewing angle. The practice used for this experiment was to visually inspect the interior of the
gearbox in detail each time the run was halted. then take a set of pictures of anything of interest.
then a set of stock pictures of the gear for archive. Upon
stopping a run. the oil inside the gearbox was frothy. and
was taken up by the gears and intertered with the pictures.
Taking clear shots required waiting for the oil to run oft.
which took two to three minutes since the oil is highly
viscous. Figure 12 is a photo of the driven gear just

downstream from the mesh point, taken prior to any

damage. As can be seen, the surface of the gear is coated

with oil.

Figure 12. Borescope image from test [4 of gear with no damage
The experiment ran for 56 hours at the gearbox’s design load. to allow for break-in and any infant

mortality that might occur, then was loaded at three times the design load until failure. The run was



stopped at the transition from design load to test load for an internal inspection. No visible signs of

deterioration were noted. The transition time was 2:00 PM.

Although the run was stopped every two hours for internal inspection, no changes were detected
visually until the first gear tooth failure, which occurred just prior to 3:00 AM. An internal
tnspection had occurred at 2:00 AM, and other than some light scoring of the follower gear's teeth,
no major signs of wear were showing. Prior to the 2:00 AM inspection, wavelet analysis of
accelerometer data had indicated some possible change, so the 2:00 AM inspection was especially

thorough. Still, no visible signs of tooth cracking or spalling were found.

At 3:00 AM. accelerometer data together with a noticeable change in the sound ot the gearbox
indicated an internal change in the gearbox. The run was
stopped at 3:00 AM based on the event noted. Upon
inspection, one of the teeth (tooth A) ot the follower gear
had separated from the gear (Figure 13) The tooth had
failed at the root on the motor side of the gear with the crack
rising to the top of the gear on the generator side. This was
the first indicator that a cracking or spalling of this gear

tooth had occurred since the previous inspection

Figure (3. [nitial failure: ~9 hours of accelerated loaded portion of the test 14

The anticipation was that the failure would progress rapidly at this point. due to sympathetic tailure
of the surrounding gear teeth. This was not the case. The run was stopped again at 3:30 AM, and
inspection showed no obvious increase in damage. At 5:00 AM, additional wear evident (Figure
14). [n this case. another failure mode was detected. The
'downstream' tooth from tooth A (refer to as tooth B) had
pieces of its top surface missing, indicating a failure mode
of spalling. There were small cracks maybe a millimeter in
from the front and rear face of the tooth, parallel to the
faces. visible from the motor side of the gear.

Figure [4. Pitting spalling events can be seen next to

initial breakage due to additional surface loading from
missing tooth — ~11 hours accelerated loading.
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The 7:00 AM inspection showed that the amount of material removed from tooth B had increased,
but not excessively. Rather than a runaway failure process, as anticipated, the deterioration was
occurring at a steady pace. Neighboring teeth now had material removed from their top-motor side
corners, i.¢. via spalling. The only visible damage to the driven gear was to tooth A and those
within the neighborhood of tooth A (extended to three teeth on either side). There was a significant,
noticeable increase in volume and change in the characteristic sound of the gearbox, along with a

change in accelerometer data.

On shutdown at 1100 AM, with a significant increase in vibration, eight teeth suffered damage.
The damaged teeth were dispersed in clusters around the gear. It appears that there were
independent clusters of failure processes, within each cluster there was a tooth failed due to root
cracking surrounded by teeth failing due to spalling. Figure 15 is a picture showing two of the
clusters close to each other. Both clusters have the upstream tooth failed by cracking at the root,

and the following tooth showing evidence of spalling.

This ground truth observation has offered several insights into the failure process. The change that
occurred in the wavelet analysis results prior to the 2:00 AM inspection, and before any observable
changes in the gears were evident, indicates that the wavelet analysis holds promise for detecting
impending failures of gear teeth. The gear tooth failure process exhibited of a steady sequence of
small failures, even at 3X loading, as opposed to one small failure leading to a catastrophic
sympathetic chain reaction failure. Based on this observation, it would appear that gear failure is
due to a number of independent processes around the gear. Each independent process consisting of
an initial tooth failure due to fatigue cracking, and sympathetic tooth failures of the downstream
teeth due to spalling. It is important to note that on shutdown, the gear was still turning torque and
RPM into torque and RPM, i.e. its ability to perform its function had not markedly suffered. So by
some measures, it had not yet failed. Taken with the previous lesson learned, it reasonable to state
that gear failure is preceded by macroscopically observable deterioration, which itself is preceded

by precursors detectable through wavelet analysis.
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From the perspective of borescope equipment, the
strength of the light source is critical. A video camera
type of capture mechanism is needed. With regard to the
MDTB, a mechanism for removing the oil from gear
teeth, such as compressed air. is necessary to provide the

best view of the gear.

Figure 13. Animage at shirdown indicates pitting and 1ooth
hreakage in muny locations ~ [6 hours cumulative uccelerated loading

For reference to processed feature data, Figure 16 shows an interstitial enveloping of gearbox
accelerometer data from the run. It illustrates clear areas of activity that directly correlate to the

gear tooth failure and appears to be
Interstitial Enveloping for Run 14
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5. REVIEW OF CONTINUING WORK

Work is planned to continue in all reviewed areas in this report. The computational modeling etfort
will investigate higher degree of freedom subsystem and system level models that are based upon
impedance and stiffness inputs from the experimental efforts. Adaptation of working models will
feed into the power flow analysis of the driveline. Torsional and axial measurements collected
during the transitional failure runs will be analyzed to correlate failure effects on structural response

and power flow observables. The predictive modeling using non-linear methods will be further

18



developed on additional sensors and other identified features. We will also continue to investigate

methods to integrate the fault effects into predictive models.
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